

PALYNOLOGY FACILITY

0041

OPEN FILE

9 | 11 | 92 HQ

Date Initials
Released

LATE PALAEOZOIC AND MESOZOIC

PALYNOSTRATIGRAPHICAL UNITS

REPORT NO. 274/25

P.L. PRICE
J. FILATOFF
A.J. WILLIAMS

S.A. PICKERING

G.R. WOOD

FEBRUARY, 1985.

BRISBANE

G.P.O. BOX 880, BRISBANE, Q'LAND. 4001

PH.: (07) 228 4358

ADELAIDE

G.P.O. BOX 2364, ADELAIDE, STH AUST. 50 PH.: (08) 218 7851

1 SUMMARY

palynostratigraphical The basic subdivision Cooper/Galilee/Eromanga and the Surat/Bowen Basin regions was developed in the 1960s. Since that time, the basic unit nomenclature ("J1", "Tr2a", etc.) applied then has been retained so as to give continuity of reporting, even though the addition of new data has necessitated the revision of the definition and scope of the units and subunits. the cumulative effect of these changes is such that there is a variety of usage and interpretation for these units which still bear the same "names" or letter/number codes. Thus, so as to avoid future confusion, it is proposed to introduce the latest modifications to the late Palaeozoic and Mesozoic palynostratigraphical units with nomenclature which will distinguish it from the earlier units and interpretations.

The proposed units, together with their **general** relationships to the superseded units, the lithostratigraphical units and geological age, are presented on the accompanying tables and figures.

2 INTRODUCTION

The palynostratigraphical nomenclature that has been applied to the Permian and Mesozoic sections of the Cooper/Galilee/Eromanga Basins and the Surat/Bowen Basins regions by CSR Oil and Gas Division is a composite nomenclature adapted from units initially established by several workers (e.g. Evans, 1966 and 1967; Paten, 1969; Dettmann and Playford, 1969) during the 1960s. Since their establishment, these units have been modified by varying degrees, both in scope and definition, with the better understanding of the microfloral succession gained from additional sampling accompanying the exploration of these regions. These modifications have come generally as a series of minor changes which, individually, did not necessitate a change to the "name" or letter/number code applied to the unit.

More recently, with the extensive sampling now available from the Surat/Bowen Basins and the Cooper/Eromanga Basins, substantial modification and subdivision of the units has occurred. modifications are a result of changes in the known ranges of the selected taxa, the understanding of the influence of facies upon the assemblages, and the morphological circumscription of the index taxa. The cumulative effect of these changes is · that the palynostratigraphical interpretation, and hence the application to a given section, has changed substantially between a report written in 1984 and one written in the 1970s, and, of late, between the various laboratories now examining and reporting upon these sections. even though the same palynostratigraphical "names" (e.g. been applied, their stratigraphical extent and significance may vary among reports and authors. The differences now are such that the retention of the old nomenclature could cause considerable confusion and has become misleading in some parts of the section. Therefore, having outlived their usefulness, they need now to be abandoned and the accompanying units set out on tables 1 to 6 will be adopted by CSR Oil and Gas Division in their place.

The following discussion is not intended to be a comprehensive account

or description of the units but rather to give a general account of the philosophy adopted, and to highlight some points of application to the Cooper/Eromanga Basins and the Surat/Bowen Basins. A more detailed account of the microfloral succession and the relation of the various generations of biostratigraphical units applied to these regions is in preparation.

3 NATURE AND SCOPE

The initial palynostratigraphical subdivision of the Surat/Eromanga regions (e.g. Evans, 1966 & 1967) was based essentially upon assemblage zones (zones defined upon general abundance and composition of the microfloras) but also incorporated, in some instances, the appearance or extinction of nominated guide fossils. Assemblage zones are best suited to providing a general correlation for isolated samples but, as their boundaries are ill-defined (unless coincident with an unconformity), they do not enable optimum biostratigraphical resolution in the case of comprehensively sampled petroleum exploration well sections.

In most well sections, where there is an adequate sequence of samples, emphasis is placed upon defining the boundaries between biostratigraphical units. The objective is to define "time lines" but it must be remembered that a biostratigraphical unit need not be (and often is not) a chronostratigraphical unit. Biostratigraphical units define the stratigraphical limits (both vertically and horizontally) of events and these are the product of both biological local environmental significant) and variation (time A chronostratigraphical unit (of NO time significance). by definition, bounded by isochronous surfaces representing the same of time throughout its lateral extent. Thus, for a biostratigraphical unit to approach being of chronostratigraphical significance, the variation in the distribution of the biological entities used to define the biostratigraphic unit boundary caused by lateral changes in the environment must be recognised and minimised.

It should be noted that not all biostratigraphical units are directed towards time correlation - for example, they may be used to define the extent of an organic facies or environment. The object of the proposed units, however, is to approximate chronostratigaphical units at least on the local or intra-basinal scale.

To attempt to realize the objective of defining biostratigraphical boundaries which approximate "time lines", several features have been considered desirable and have been given emphasis in defining the palynostratigraphical units proposed.

- 1. Definition of a boundary is based upon a single taxon where that taxon has been shown to be both nearly ubiquitous within the zone and morphologically distinct and robust.
- 2. The oldest occurrence of a taxon is preferred to its extinction, as the time of extinction can be obscured by reworking or the persistence of relict floras in isolated areas. This criterion presumes that uncontaminated samples (core and sidewall cores but NOT ditch cuttings) are available.
- 3. Emphasis is given to establishing the progenitors of the selected taxon. Utilization of members of a lineage gives a strong time significance on the principle that a species will evolve once only, provided speciation is not a result of polyploidy.

By definition, these units are "Interval-Zones" and their boundaries are "Biohorizons", each being defined in this case upon the first appearance of a specified taxon. The application of the units, however, is not one of the rigid mapping of the first uphole occurrence of the designated taxon but is tempered by a palynologist's assessment of the significance of that occurrence. This assessment is not easily defined but is influenced by the yield, the preservation, the diversity and the associated taxa in relation to that of the preceding and succeeding samples. This is not to say that the presence of the index taxon will be assumed in a poor or restricted assemblage but rather

that the particular sample will not be taken as an indicator of the position of the boundary in question. Thus, in application, the proposed units are best suited to a sequence of samples which are free from contamination and in which the preservation is at least fair. If applied to isolated samples (e.g. outcrop) or a sparsely sampled section, then the result is often best regarded as being broadly defined and thought of as being "no older than" the designated unit.

4 NOMENCLATURE

An alpha-numerical nomenclature has been adopted for the proposed units. It is hierarchical in structure, with the numerical value increasing from oldest to youngest within each geological period. first character of the unit nomenclature ("P" = spore/pollen, "D" = dinoflagellate) indicates the palynomorph group used to define the unit. The second character ("P" = Permian, "T" = Triassic, "K" = Cretaceous) gives the adopted geological age. The third, fourth, fifth numerals indicating and sixth characters are the stratigraphical position - the higher the number, the younger or higher the stratigraphical position. The first numeral (i.e. third character) represents the broad subdivisions which can be applied to approximately 90% of samples examined. In general, they correspond to the majority (those which have proved stable) of the major units of the previous The second numeral (i.e. fourth palynostratigraphical subdivisions. character) corresponds more or less to the subzones of the earlier nomenclature. These subzones are more difficult to apply and so only some 60% of samples can be assigned to this level in the hierarchy. The third and fourth (i.e. fifth and sixth characters) are for the more subtle subdivisions and give scope for inserting new units without disrupting the already established units.

The "International Stratigraphical Code" perhaps "frowns" upon such numerical nomenclatures, preferring to sanction a convention which takes the form of the name of the defining fossil (provided that the

name has not been used for a previous biostratigraphical unit). It is felt, however, that the numerical nomenclature adopted here has several practical advantages in terms of its application to the hydrocarbon exploration industry.

- 1. The numerical sequence indicates the relative stratigraphical position, circumventing the need to know the stratigraphical order of the fossil zones;
- This system is readily adopted and understood by non-specialist explorationists and managers;
- 3. The units are amenable to computer data processing;
- 4. The "alpha-numerical" codes are concise and thus suitable for inclusion on geological cross-sections, logs, etc; and
- 5. This nomenclature avoids the complications which arise from taxonomic revisions of the index or naming fossil.

The particular format adopted has been designed so as to minimise confusion with the previous alpha-numerical codes which these now replace.

5 CONVENTIONS

In applying the proposed nomenclature, the following conventions will be used to indicate the levels of confidence and limits of biostratigraphical resolution applied to individual samples.

1. Where a sample can be subdivided to the finest level of resolution,

it will be designated as on the accompanying tables (e.g. "PP3.3.1");

- Where a sample can only be assigned to a lesser level of classification, it will be designated by the first two letters (palynomorph type, adopted age) followed by the numeral or numerals representing the "zone" or "subzone" (e.g. "PP.3", "PP3.3");
- 3. If the sample can be defined only within a range, the lower and upper limits will be given (e.g. "PP3.2 - PP4");
- 4. If the sample can be assigned to either of two adjacent subzones, it will be given as a range (e.g. "P3.3.2 PP4.1");
- 5. If a sample can be defined within a range in which assignment to a particular subzone is favoured but cannot be definitely made, then the designation is given as for a range followed by a question mark and the favoured unit (e.g. "PP3.2 PP3.3, ?PP3.3"). For instance, in the case of where the marker species is absent or doubtfully identified and the subordinate taxa would favour, but can not establish, a particular assignment;
- 6. An attempt should always be made to give a zonal range for a sampled horizon rather than use the expressions "no older than" or "no younger than". For example, if the horizon is able to be defined as "no older than PP3", then it is unlikely that it will be any younger than PP6 and thus it is preferable to indicate this determination as "PP3 PP6". In the case of cuttings, or where reworking is suspected, these phrases may not be avoidable and they can be abbreviated to "N.O.T." or "N.Y.T." in such instances.

6 AGE RELATIONSHIPS

The relationships of the biostratigraphical units to the international geochronological zones as presently interpreted are set out in fig 1. and represent a consensus based upon the inter-continental correlations of spore/pollen and dinoflagellate microfloras and invertebrate and micropalaeontological faunas. The geochronological zones and the corresponding estimated absolute ages adopted are those of Harland et al. 1982.

In accepting the relationship given for the chronozone (period/epoch/age) and "absolute age", several things should be recognised.

- 1. The period boundaries relative to the various series/stage boundaries have not been agreed upon in the international arena. They have not been defined in Australia as no regional chronostratigraphical units have been established and adopted for Australia as a whole.
- 2. There are several interpretations as to the relationship of the radiometric ages to the Period boundaries (cf. Harland et al. 1982, Odin 1982, Palmer 1983, van Eysinga 1975, van Hinte 1978).
- 3. The majority of absolute ages are established on igneous rocks and the age relationships of these to the fossiliferous sediments may be contentious.
- 4. The faunal and floral intra- and inter-continental correlations often are imperfectly known and sometimes conflicting.
- 5. While the migration times of an organism may not be geologically significant on a basinal scale, and only slightly significant on a continental scale, they can be substantial on a global scale. For example, the initial occurrence of *Cicatricosisporites* spp. in Australia has been taken as approximating the Cretaceous/Jurassic

boundary. This form however, has been found as low as the mid-Callovian (Middle Jurassic) in the western north Atlantic and northern African regions.

It must be recognised therefore that the absolute time relationships of these biostratigraphic units as set out on the accompaning tables are, at best, subjective estimates. Thus, any conclusions based upon them (for example, "Lopatin" time/temperature calculations) must be regarded as being speculative.

7 RELATIONSHIPS WITH EXISTING UNITS

7.1 General Comments

The broad relationship between the proposed biostratigraphical units and those applied to the Surat/Eromanga region up the end of 1984 is summarised in tables 1 - 6. The presented relationship should be regarded as being a generalised guide, especially in respect of the Jurassic. As noted above, the interpretation of the earlier units has changed, as have the taxonomic concepts applied to certain of the species and thus the relationship of individual sections must be established with an historical perspective and in the context of differing interpretive opinions between the various investigators. Additionally, certain of the major units (especially Jurassic) have been abandoned in favour of those defined on perhaps less obvious forms but which have proved to be less susceptible to environmental influences or are without the complications of difficult taxonomic subdivision. A detailed account the historical developments and application of the palynostratigraphical units for the Cooper/Eromanga Basins and Surat/Bowen Basins is in preparation. The present discussion will be limited to notes set out under each Period to assist in the interpretation of the proposed units.

7.2 <u>Devonian</u>

The Early and Middle Devonian units were developed by Price (1980) from the Adavale Basin sequence and remain untested for sections outside this region. The Late Devonian units have been adapted from assemblages described from several localities in western and northern Australia (e.g. Balme 1962, Playford et al. 1976). The boundaries of these Late Devonian assemblages are not well known as they have not been recognised in a continuous section.

7.3 Carboniferous

The Carboniferous units are based upon the assemblage zones described by Playford and Helby (in Kemp et al. 1977). The selection of the index forms for the definition of the present units has been somewhat arbitrary although the published range charts of the described Carboniferous sections (e.g. Playford 1971, 1976, 1978) have been taken into account.

In terms of the Late Carboniferous and Early Permian units, there is difference in interpretation given by Paten (1969) Price (1973, 1976, 1983) and that given by Kemp et al. (1977) in terms of the positioning of stage 1 and stage 2 boundaries. Paten and Price recognised the base of stage 1 as being occurrence of the monosaccate pollen (Potonieisporites Spp. and Plicatipollenites spp.) while Kemp et al. considered establishment of an abundance of monosaccate pollen as being definitive. Thus stage 1, in terms of Paten and Price, corresponds to the base of Anabaculites uberti Assemblage of Kemp et al. Similarly, the base of stage 2 was designated by Paten (1969) and Price (1973, 1976, 1983) as being the oldest striate pollen. It is this concept of Paten and Price for the stage 1 and stage 2 boundaries that has been incorporated into the present zonal scheme.

7.4 Permian

The Permian palynostratigraphy of the Cooper and Bowen Basins has been reviewed by Price 1983 and, with few exceptions, the biostratigraphical boundaries of the two nomenclatures correspond. The time span of the Permian Period relative to palynostratigraphical units adopted here is consistent with Harland (1982) rather than the Waterhouse-based (Waterhouse, 1976) positioning indicated by Price (1983).

The major change lies with the subdivision of PP5. Price (1983)

indicates that Microreticulatisporites bitriangularis extended down only to the base of Black Alley Shale. Subsequent work in the Denison Trough indicates that this taxon extends at least into the part of the Ingelara Formation and, in (e.g. Christmas Creek and Rolleston) into what is presently regarded as being the Freitag Formation and the upper Aldebaran Formation of Thus the relationship given by Price (1983) of AAR's nomenclature. what was "upper stage 5c" and "upper stage 5b" is no longer valid. The significance and usefulness of M. bitriangularis is being re-evaluated and is for the present excluded from the proposed The subdivision of PP5 based upon the initial nomenclature. occurrence of Dulhuntyispora stellata is applicable only to the Western Australian section and possibly to the Galilee Basin section as this form occurs only rarely in the Cooper and Bowen Basins. present in the Bowen Basin (apart from the use of the M evansii Acme Zone in the Denison Trough and Roma Shelf), PP5 can be subdivided only on broad assemblage characters giving a general indication as to whether the sampled horizon is from the upper, mid or lower part of the unit. Being based upon assemblage characteristics, these subunits have vague boundaries which are partly environmentally influenced. As such, they therefore have been excluded from the present nomenclature.

7.5 Triassic

The Triassic sequences of the Bowen and Cooper Basins remain as the least studied the Mesozoic sections in terms of palynostratigraphical subdivision. These sections, which are almost exclusively non-marine, can be strongly influenced by local facies effects and the index forms are often sporadic distribution. The precise relationship of PT3, PT4 and PT5 to each other and to the lithostratigraphy is uncertain, as in the main area of study, that is, the Ipswich region of Queensland, the section is considered to be incomplete.

7.6 Jurassic

The Jurassic, for reason of its recently recognised economic importance in the Eromanga Basin, has been the subject of intense and, consequently, is the most modified in terms palynostratigraphical subdivision. By 1980, it was clear that the established units were difficult to apply and strongly influenced by local floral variation. The absence of recent data in 1978 on either the Surat or Eromanga Basin Jurassic microfloral successions led to difficulties in relating the sand and shale sequences in the two regions. The most testing of these miscorrelations related to the association of the upper Poolowanna Beds and the Birkhead Formation. This partly related to the lack of detailed stratigraphical information on the distribution of Contignisporites cooksoniae and some closely related variants and was aggravated by the mislabelling of a sample from Pandieburra No. Although strong reservations were expressed biostratigraphical implications and the correlations at the time with the problems and limitations being identified (Price, 1978) on microfloral grounds, the correlation was tentatively accepted because of the positive identification of a typical PJ5 J5-6b) association in Pandieburra No.1 at an horizon designated as being 5753ft (Report 13/105). This stratigraphically low position of PJ5 (uJ5-6) made PJ4 (lower J5-6) assignment for the Poolowanna Beds seem possible on the basis of the relative positions of the sampled horizons establised on the basis of log correlation. Recently it has been realised that it is most unlikely that the Pandieburra shale sample, designated as core 3/5753ft, could have come from the stated depth as no shale was logged at that depth. It most probably represents a piece of core 2 as a similar PJ5 (uJ5-6b) assemblage was recovered from core 2/5145ft.

Because of the fickle distribution of *Contignisporites* spp. low in the succession and difficulties in distinguishing the various morphological entities (see Price 1978), the use of *Contignisporites* cooksoniae has been abandoned. This has caused the major change to

the biostratigraphical subdivision of the Jurassic. Other modifications have included the PJ3.1/PJ2.2 boundary which is defined upon The presence of Tsugaepollenites spp. with a well developed velum rather than Tsugaepollenites in general.

The boundary, PJ2.1/PJ2.2, is based upon Nevesisporites vallatus but it is acknowledged that similar forms have been seen as low as PT2 (late Early to Middle Triassic). At present it is thought that N. vallatus and the Triassic variants can be distinguished morphologically.

In defining the PJ4/PJ5 boundary, care must be taken to distinguish Murospora florida from Matonisporites cooksoniae. The base of what was "upper J5-6b" was initially based upon the occurrence of Aequitriradites sp. 629 and later upon its acme. Its regional biostratigraphical value has been reduced in that it is known to be present as low as basal PJ4.2 but it still is useful, however, as a local unit defining a specialized depositional environment.

The PK1/PJ6 boundary is based upon the appearance of the genus Cicatricosisporites where it may be represented by any one of three morphological variants.

7.7 Cretaceous

The Cretaceous palynostratigraphy has remained stable both in the definition of the major units and their application to the Eromanga Basin section. The majority of the modifications relate to the subdivision of the major units and to a greater emphasis being placed upon the oldest occurrence of individual taxa. For example, the position of the *P. pannosus/A. distocarinatus* boundary was originally defined upon the extinction of *C. paradoxa* while the PK6/PK7 boundary, is defined herein by the oldest occurrence of *Crybelosporites* sp. cf. *C. brenneri* (sp. 1255) - an event which is lower in the sequence. An attempt has been made to increase the

biostratigraphical resolutions of the non-marine Winton Formation, but this proved to be elusive as the microflora appeared to be strongly facies influenced and displayed a high degree of reworking.

In addition to the spore/pollen subdivision, the marine late Early Cretaceous is amenable to subdivision palynostratigraphically on the basis of phytoplankton. The phytoplankton units and nomenclature presently applied to the Eromanga Basin section is given on $\frac{1}{16}$ 2 \$5 and is that of Morgan (1980).

The biostratigraphical subdivision of the Australian Mesozoic based upon marine phytoplankton is the subject of a detailed review by Helby et al. (in press) and thus any modifications to Morgan's units as they apply to the Eromanga Basin will not be given until that review is published.

8 LITHOSTRATIGRAPHIC RELATIONSHIPS

The relationships of the lithostratigraphical to biostratigraphical units as shown on figures 2, 3 and 4 are intended to give only the general timing of sedimentation with no attempt to imply geographical distribution nor loss of section due to erosion. That is to say the lithostratigraphy represents the maximum known extent for each region.

The relationships as set out on figures 5 to 11 show in a stylized way the palynologically datable erosional and/or non-depositional events that occurred at about the time of deposition and immediately after but exclude more recent erosional events.

ACKNOWLEDGEMENTS

This report is a compilation which has drawn upon biostratigraphical and lithostratigraphical studies both from within the CSR Oil and Gas Division and its various partners and from outside organizations.

In particular we would like to acknowledge the research work and comments offered to us by Mary Dettmann, Robin Helby, John McKeller, Wayne Harris, Peter Hawkins, Clinton Foster, Lindsay Elliott, Peter Moore and Bob Day.

9 REFERENCES

- BALME, B.E., 1962: Upper Devonian (Frasnian) spores from the Carnarvon Basin, Western Australia. Palaeobotanist, 9, pp 1-10.
- DE JERSEY, N.J., 1966: Carboniferous spores from Southern Queensland

 IN Symposium on Floristics and Stratigraphy of

 Gondwanaland, Birbal Sahni Institute of Palaeobotany,

 Lucknow, pp. 26-43.
- DETTMANN, M.E. & PLAYFORD, G., 1969: Palynology of the Australian Cretaceous A Review IN K.S.W. Campbell (ed.)

 Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill, pp. 174-210.
- EVANS, P.R., 1966: Mesozoic stratigraphic palynology in Australia.

 Australas. Oil Gas Journal, 12(6), pp. 58-63.
- EVANS, P.R., 1967: Upper Carboniferous and Permian palynological stages and their distribution in eastern Australia. Rec.

 Bureau of Mineral Resources, Geology & Geophysics, Aust.,

 1967/99, pp. 1-13 (unpubl.).
- FRAKES, L., et al. (in press): Australian Cretaceous shorelines,

 Stage by Stage, Australian Cretaceous Palaeoenvironments

 Group.
- GEOLOGICAL SURVEY OF QUEENSLAND, 1981: Review of subsurface stratigraphic data, northern Galilee Basin. GSQ Record 1981/3.
- HARLAND, W.B., COX, A.V., LLEWELLYN, P.G., PICKTON, C.A.G., SMITH, A.G. & WALTERS, R., 1982: A geologic time scale Cambridge Earth Science Series.

- HAWKINS, P.J. 1984: Permian correlation chart Cooper and Galilee
 Basins. Unpublished note.
- HELBY, R.J., et al. (in press): Mesozoic Biostratigraphy.

 Alcheringa.
- KEMP, E.M., BALME, B.E., HELBY, R.J., KYLE, R.A., PLAYFORD, G. & PRICE, P.L., 1977: Carboniferous and Permian palynostratigraphy in Australia and Antarctica A review.

 Bureau of Mineral Resources, Australia, Journal of Australian Geology & Geophysics, 2(1977), pp. 177-208
- Mc CLUNG, G., 1981: Review of the stratigraphy of the Permian Back Creek Group in the Bowen Basin, Queensland. Geological Survey of Queensland, Publication 371, Palaeontological Paper 44, pp. 1-31.
- MORGAN, R., 1980: Palynostratigraphy of the Australian Early and Middle Cretaceous. Mem. Geol. Surv. N.S.W., Palaeont. 18, pp 1-153.
- ODIN, G.S., 1982: The Phanerozoic time scale revisited. *Episodes*, 3 pp. 1-9.
- PALMER, A.R., 1983: The decade of North American geology: 1983 geologic time scale. Geology, Vol. 11, pp. 503-504.
- PATEN, R.J., 1969: Palynologic contributions to petroleum exploration in the Permian formatins of the Cooper Basin, Australia.

 APEA J., 9, pp. 79-87.
- PLAYFORD, G., 1971: Lower Carboniferous spores from the Bonaparte Gulf
 Basin, Western Australia and Northern Territory. Bureau of
 Mineral Resources, Geology and Geophysics, Bulletin 115.
- PLAYFORD, G., 1976: Plant microfossils from the Upper Devonian and

- Lower Carboniferous of the Canning Basin, Western Australia. Palaeontographica, Abt. B, 158, pp. 1-71.
- PLAYFORD, G., 1977: A Lower Carboniferous palynoflora from the Drummond Basin, East-Central Queensland. *Proc. R. Soc.*@1d 88, pp. 75-81.
- PLAYFORD, G., 1978: Lower Carboniferous spores from the Ducabrook Formation, Drummond Basin, Queensland. *Palaeontographica Abt.* B, 167, pp. 105-160.
- PLAYFORD, G., JONES, B.S. & KEMP, E.M., 1976: Palynological evidence for the age of the synorogenic Brewer Conglomerate, Amadeus Basin, Central Australia. *Alcheringa* 1, pp. 235-243.
- POWIS, G.D., 1984: Palynostratigraphy of the Late Carboniferous sequence, Canning Basin, W.A. IN Purcell, P.G. (Ed.), 1984, The Canning Basin W.A. Proceedings of Geol. Soc. Aust./Pet. Expl. Soc. Aust. Symposium, Perth, 1984, pp 429-437.
- PRICE, P.L., 1973a: Permian palynostratigraphy, Denison Trough area, ATP 119P, Bowen Basin, Queensland. Mines Administration Pty Ltd, Palynol. Rep., 17/3 (unpubl.).
- PRICE, P.L., 1973b: Cooper Basin palynology. Mines Administration Pty Ltd, Palynol. Rep., 13/95 (unpubl.).
- PRICE, P.L., 1976: Permian palynology of the Bowen Basin; IN Jensen et al. (eds) A guide to the Geology of the Bowen and Surat Basins in Queensland. 25th I.G.C. Excursion Guide 3C.
- PRICE, P.L., 1978a: Pandieburra No. 1. Mines Administration Pty Ltd, Palynol. Rep., 13/105 (unpubl.).

- PRICE, P.L., 1978b: Wooloo No. 1. Mines Administration Pty Ltd, Palynol. Rep., 13/112 (unpubl.).
- PRICE, P.L., 1978c: Mesozoic biostratigraphy Western Eromanga Basin.

 Mines Administration Pty Ltd., Palynol. Rep., 13/116

 (unpubl.).
- PRICE, P.L., 1980: Biostratigraphy of the Devonian section from selected wells in A to P 232PO, Adavale Basin, Queensland.

 Mines Administration Pty. Limited Palynological Laboratory Report No. 208/1 (unpubl.).
- PRICE, P.L., 1983: A Permian palynostratigraphy for Queensland; IN Permian Geology of Queensland. Geol. Soc. Aust., Qd Div. pp. 155-211.
- VAN EYSINGA, F.W.B., 1975: Geological Timetable (3rd edn).

 Amsterdam: Elsevier.
- VAN HINTE, J.E., 1978a: A Cretaceous time scale. IN Cohee et al. (1978), pp. 269-97.
- VAN HINTE, J.E., 1978b): A Jurassic time scale IN Cohee et al. (1978), pp. 289-97.
- WATERHOUSE, J.B., 1976: World correlations for Permian marine Faunas.

 Pap. Dep. Geol Univ. Qd., 7(2), pp. 1-232.
- P.L. Price

J. Filatoff

A.J. Williams

S.A. Pickering

G.R. Wood

	OPTED . AGE	SPORE/POLLEN ZONES	CL	INTERVAL ZONES URRENT NOMENCLATURE	INDEX FORMS
					Phyllocladidites mawsonii
C R	LATE	A. distocarinatus	PK7		
т		P. pannosus	PK6		 Crybelosporites sp. cf.C. brenneri (sp. 1255) Phimopollenites pannosus
A C E		P. paradoxa	PK5	PK5.2 PK5.1	— Pilosisporites grandis
o U		C. striatus	PK4		 Coptospora paradoxaCrybelosporites striatus
s	EARLY	C. hughesii	РК3	PK3.2 PK3.1	Pilosisporites parvispinosus
		F. wonthaggiensis	PK2	PK2.2 PK2.1	 Foraminisporis asymmetricus Trilobosporites purverulentu
		C. australiensis	PK1	PK1.2	Foraminisporis wonthaggiensiCyclosporites hughesii
J U R.	LATE	UJ5-6c	PJ6	rKI.1	— Cicatricosisporites spp.
	· · · · · · · · · · · · · · · · · · ·		_		 Retitriletes watherooensis

UJ5-6a-b PJ5 Murospora florida	ADOPTED AGES	PRE-1985 USAGE			CURRENT NOME (INTERVAL	:	INDEX FORMS
LATE	EARLY	C. australiensis	PK1			:	Cicatricosisporitas enn
LATE		.:	DIG	РЈ6.2			
LJ5-6 and J4b PJ4 PJ4.2 Perotrilites sp. 627	LATE	UJ5-6C	PJ0	PJ6.1	PJ0.2.1		Ceratosporites equalisRetitriletes watherooensis
LJ5-6 and J4b PJ4 PJ4.1 Perotrilites sp. 627		UJ5-6a-b	рЈ5		,		Murospora florida
MIDDLE		1	рј4	РЈ4.2			Perotrilites sp. 627
PJ3.3 PJ3.3.2 PJ3.3.1	WIDDLE			PJ4.1			Retitriletes circolumenus
Dia Pight Pight			·	PJ3.3	PJ3.3.2	 <u> </u>	Camarozonosporites ramosus
Description of the latest color of the lates		J4a			PJ3.3.1	· ·	Klukisporites lacunus
PJ3.1	}		:	рЈ3.2			Stanlinismorites manifestus
Description				рј3.1			-
PJ2 PJ2.2.1 PJ2 PJ2.2.1 PJ2.1 PJ2.1 Podosporites tripakshii PJ1 Classopollis classoides	EARLY				рј2.2.2	:	·
Jla PJ2.1 Podosporites tripakshii PJ1 Classopollis classoides		Jlb		PJ2.2	PJ2.2.1		
PJ1 Classopollis classoides		Jla		PJ2.1			
			РЈ1				Classopollis classoides
TR. LATE ASSEMBLAGE Polycingulatisporites	TR. LATE	BUNDAMBA	PT5				

APRIL 1985

MAY 1985

	OPTED AGES	PRE-1985 USAGE	C	CURRENT NOM			INDEX FORMS
J U R A	EARLY	J1	PJ1				Classopollis classoides
A S S I C		BASAL BUNDAMBA	РТ5	PT5.2	PT5.2.2 PT5.2.1		Retitriletes austroclavatidites Retitriletes rosewoodensis
		ASSEMBLAGE	~~~~~	PT5.1	~~~~~~~~~		Polycingulatisporites
T R	LATE	~~~~~~~~~~	ні	ATUS	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~	crenulatus/P. mooniensis
I		IPSWICH	PT4	PT4.2			Annulispora densata
A	·	ASSEMBLAGE	PT4	PT4.1			Annulispora folliculosa
s		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ Н I	A T U S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
C	MIDDLE	Tr3c-d	PT3			• ;	Lycopodiacidites kuepperi
		Tr3a-b		PT2.2			(sp. 84)
		Tr2b	PT2			· · · · · · · · · · · · · · · · · · ·	Rugulatisporites trisinus (sp. 708)
	EARLY	Tr2a		PT2.1			Aratrisporites spp.
		Trlb	PT1				Lunatisporites pellucidus
P E R M	LATE	Trla	PP6			·	Triplexisporites playfordii
Ã							111ptex13potites pragrotati

	OPTED AGES	PRE-1989 USAGE	5	CI	JRRENT NOMEN (INTERVAL 2			INDEX FORMS
T R I.	EARLY	Trlb	:	PT1				— Lunatisporites pellucidus
-		Unit Trla		PP6		·		— Triplexisporites playfordii
P.	LATE	upper stage	U5b-c	PP5	PP5.2		:	— Dulhuntyispora stellata
E R		5	U5a	FFS	PP5.1			— Dulhuntyispora parvitholus
M	-,	lower stage	L5c		PP4.3			— Dulhuntyispora dulhuntyi
I A		5	L5b	PP4	PP4.2			Didecitriletes ericianus (sp.7
N			L5a		PP4.1			Dulhuntyispora granulata
			U4b		PP3.3	PP3.3.2		Lopadiospora vermithola
	EARLY	stage 4		PP3	<u> </u>	PP3.3.1	ļ ·	Acanthotriletes villosus
		·	U4a	<u> </u>	PP3.2		•	Praecolpatites sinuosus (sp.2)
			L4		PP3.1	 	-	Phaselisporites cicatricosus
		stage 3	3b .	PP2	PP2.2			Granulatisporites trisinus
		stage 3	3a ;		PP2.1	·	<u> </u>	Pseudoreticulatispora pseudoreticulata
		stage 2	:	PP1				
			_					Protohaploxypinus spp.
C A R B.	LATE	stage 1		PC4				
"					<u> </u>		ļ	Potonieisporites spp.

CSR OIL AND GAS DIVISION - CARBONIFEROUS NOMENCLATURE

	OPTED GES	ASSEMBLAGE ZONES			NOMENCLATUR	INDEX FORMS
PER I	EARLY	stage 2	PP1			 — Protohaploxypinus spp.
C A B	LATE	stage l or Anabaculites yberti Assemblage	PC4			Potonieisporites spp.
O N I F E		Grandispora maculosa Assemblage	PC3			Grandispora maculosa
R O U S	EARLY	Anapiculatisporites largus Assemblage	PC2	. •		Crassispora invicta
		Grandispora spiculifera Assemblage	PC1			Dibolisporites distinctus
D E . V.	LATE	Retispora lepidophyta Assemblage	PD8	·		Retispora lepidophyta

TABLE 6

0067

TIME RELATIONSHIP OF

PALYNOSTRATIGRAPHIC UNITS

0068

GEOLOGIC TIME SCALE AFTER HARLAND ET AL. (1982)

HA	RLA	ND	ET AL (1982))	· 	
MYB		LATE	CENOMANIAN	PHIMO.	PK 7	
100	CRETACEOUS		ALBIAN	==	PK 5	5·2 5·1
	CRETA		113	165	PK4	
		۲	APTIAN	TRISACCITES	PK3	3 2
125		EARLY	BARREMIAN 125 -	Ē	PK 2	2 2
			- 131 -	ES		21
	-144-		Z BERRASIAN	MICROCACHRYIDITES	PK 1	1.2
150-		LATE	ISO	CROCA		6.2 622
		-63	OXFORDIAN	. MI	PJ 6	6.1
		.	CALLOVIAN			4.2
175 -	URASSIC	MIDDLE	BATHONIAN	LENITES	PJ4	4-1-
	or		AALENIAN	TSUGAEPOLLENI TES	PJ3	3.3
		-66	TOARCIAN			3·2 3·1
200-		EARLY	PUENSBACHIAN 200 SINEMURIAN	OASSOROLE	PJ 2	2.2 2.2.2 2.1 2.11
		, E	206	0	PT 5	5.2
	-213-		RHAETIAN 219	ITES	· · · · · · · · · · · · · · · · · · ·	5.1
225-	SIC	LATE	NORIAN 225 CARNIAN	FALCISPOR	PT4	4 · 2
	TRIASSIC	23.	LADINIAN	₹	, , , ,	, , , , ,
	• `	SAIDOLE	238 ANISIAN		PT 3	7.7
250	248	E	SCYTHIAN		PT2	2-1
250-		LATE	TATARIAN KAZANIAN		PP 5	§ 2
	z	258	KUNGURIAN	TITES	PP4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	PERMIAN		ARTINSKIAN	STRIATIES	PP 3	
275	ā	EARLY	SAKMARIAN		PP2	2 2
	284		ASSELIAN		PPI	

GEOLOGIC TIME SCALE AFTER HARLAND ET AL.(1982)

TIA			TALE AFTER		,	
MYEP	₹LAI +213	ND	ET AL. (1982)			
MYBP			RHAETIAN	PT 5	51	
1		LATE	NORIAN	 -^^ }-	4 2	[3]
225		ت	225	PT 4		<u> </u>
1			CARNIAN		4 - 1	
	Sic	231	LADINIAN	, , ,	,	,
	FRIASSIC	MIDDLE	338 —	PT 3		
l	=		ANISIAN		2:2	
		243	SCYTHIAN	PT 2	2.1	
250-			TATARIAN	PT PP A	5 2	
} ;		LATE	KAZANIAN	PP 5	3 1	
		258	<u> </u>	PP 4	4 2	
	_		KUNGURIAN 203		3 3	777
	Z Z		ARTINSKIAN	PP3	3.7	
276	PERMIAN	R 14	SAKMARIAN	PP2		-
275		EARL	ASSELIAN			
	286	Ŀ	, .	PP 1		
			GZELIAN			
			KAZIMOVIAN			
300			MOSCOVIAN			
		LATE		PC 4		
		د				
			BASHKIRIAN			
	CARBONIFEROUS					
	E R	320				
325	Ž			1		
	RBC		SERPUKHOVAN	PC 3		
	J		J33 —			•
		FIY.				
		Ę¥	VISEAN	PC 2		
350						
3301			352	 		
			TOURNASIAN	PCI		
	360		FAMMENIAN	PD 8		
		LATE	367			
	ł		FRASNIAN	PD 7		
375	1	374	GIVETIAN	PD 6	6 2 6 T	
	_	2	380	PD 4	4 - 2	
	× ×	MIDDLE	EIFELIAN		4 - 1	
	DEVONIAN	307		PD 3		
	9		EMSIAN	PD 2		
		اح	394			
400		EARLY	SIEGENIAN	PDI		
		-	GEDINNIAN			.
	408		GEUINNAN			$oldsymbol{\bot}$
	-			30959 U	32	5- 61

ACT SE	AG	E		BIOS			PEDIRKA BASIN AREA	•	COOPER BASIN AREA S.W. N.E.		ADAVALE BASIN AREA	ROMA SHELF AREA
100-	CRETACEOUS	EARLY AND ALBIAN LATE	TRISACC	PK 7 PK 6 PK 5 PK 4 PK 3 PK 2	5-1	١	WINTON FM. BECKERS TM. ALLAN MOSTORS WALLUMBILLA of M. CADNA - OWIE FM.	BASIN	WINTON FM OCOMMONITA TOURS THE TOUR	Pennoal	COREENA MAR. CONCASTER MAR. CADNA OWIE MOORAY	CGRMAN CK FM. SUBAT SUBAT SUBAT SUBAT SUBATION CONCERNA WALLES MARK BUNGIL FM. ORANIO SW
160-	ASSIC	MIDDLE	TSUGAEPOLLENITES MICROCACHEVIDITES	PJ 6	1, 1 6 2 6·1 4 2	0 1 2 0 2 1	ALGEBUCKINA SST	EROMANGA	NAMUR SST UNIT WESTROURNE FM ABORT SST HUTTON SST		SST WESTEDUENE /M DOGE 131 BIRKHEAD PM HUTTON SST	ORALLO FM GUARTE AMUNDA SST WEST EQUANA FM. WEST EQUA
200-	JURA	EARLY	CLASSOPOLLS 13	PJ 3 PJ 2 PJ 1 PT 5	3 2 3 1 2-2	111	POOLOWANNA BEDS	5223	BASAL - JURASSIC SHALE UNIT	1.55	BASAL JURASSK SHALE UNIT	EVERGREEN FM MECIFICE 351 LOOTSTOME SIDS
220-	TRIASSIC	MIDOLE LATE	FALCISPORITE	PT 4 PT 3 PT 2 PT 1	4·2 4·1	•	WALKANDI FM. NOTE The indicated ver	SIMPSON DESERT BASIN	MORNEY BEDS NAPPAMERRI FM. distribution of the Litheoreriprophic Units I hapon relative to the floating-paths Units		MODIATIABLE UNALAMO	MOOLAYEMBER E E E E E E E E E E E E E E E E E E

Y. B.P.	ı	GE	BIOS'	TRAT.		ADAVALE BASIN		VEN SIN
80 -	TEM IAN	LA217	201			JOCHMUS FORMATION		
	-	3	PPI		<u>:</u>	JERICHO FORMATION	'KUTTUNGS	$\widehat{\cdot}$
-						LAKE GALILEE SST	,~	
00 -		LATE	PC4					
_	ROUS	-						&
0 -	CARBONIFEROUS	EARLY	PC3					e ee e
) -)		PC 2			DUCABROO	K FM	DURABILLA BEDS
,			PCI					
) +		LATE	PD8 PD7				CHRISTMAS C	REEK BEDS
			PD6	- 6 2		ETONVALE FM	e de la companya de l	***
	A	DLE	PD5	4 2		BURY LIMESTONE		
	Z	MIDDLE	PD4	4 1		LOG CREEK FM		
	DEVONIAN		PD3 PD2			EASTWOOD BEDS		
) -	J	EARLY	PDI		-			·
	SILURIAN				,			
ا ا	SILU					Note that only the units that have been palynalogically dated are show		

ADAVALE REGION ROMA REGION **CRETACEOUS UNITS** SURAT BASIN EROMANGA BASIN MYB P. WINTON FM. PK7 CENOMANIAN MACKUNDA FM. E. ludbrookiae ALLARU FM. PK6 100 TOOLEBUC FM. SUBGROUP 5.2 W GRIMAN CREEK FM. PK5 ALBIAN 5.1 **COREENA** SURAT SILTSTONE P. turneri MBR ROLLING WALLUMBILLA ! 110 WILGUNYA PK4 COREENA MBR \mathbf{a} **DONCASTER** APTIAN 3.2 DONCASTER MBR MBR PK3 O. operculata: 3.1 WYANDRA SST. 120 BARREMIAN BUNGIL FM. 2.2 CADNA-OWIE PK2 HAUTERIVIAN FM. 130 -2.1 VALANGINIAN MOOGA SST. 1.2 140 BERRIASIAN HOORAY SST. PKI ORALLO FM. TITHONIAN GUBBERAMUNDA SST. 150 1.1 WESTBOURNE

FM.

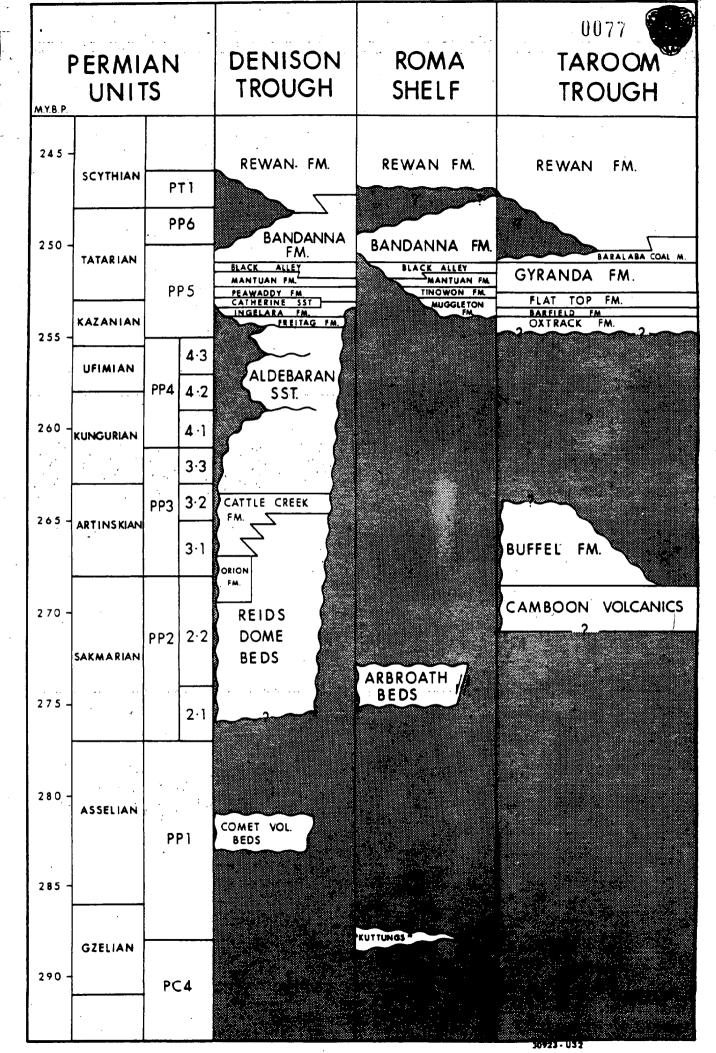
FIG.

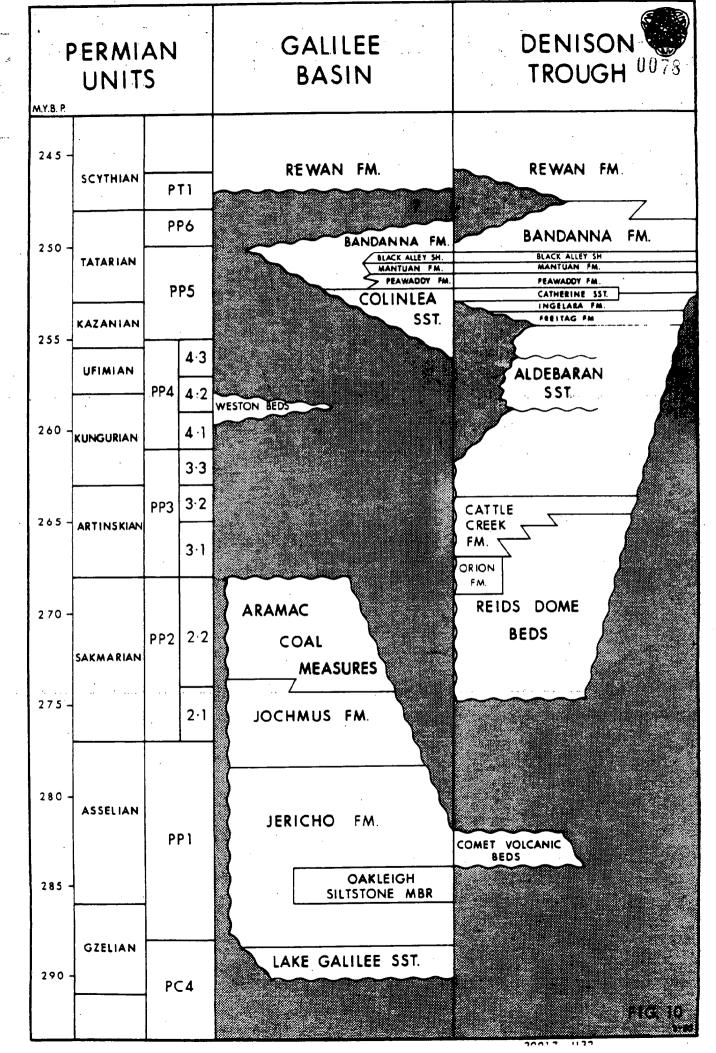
KIMMERIDGIAN

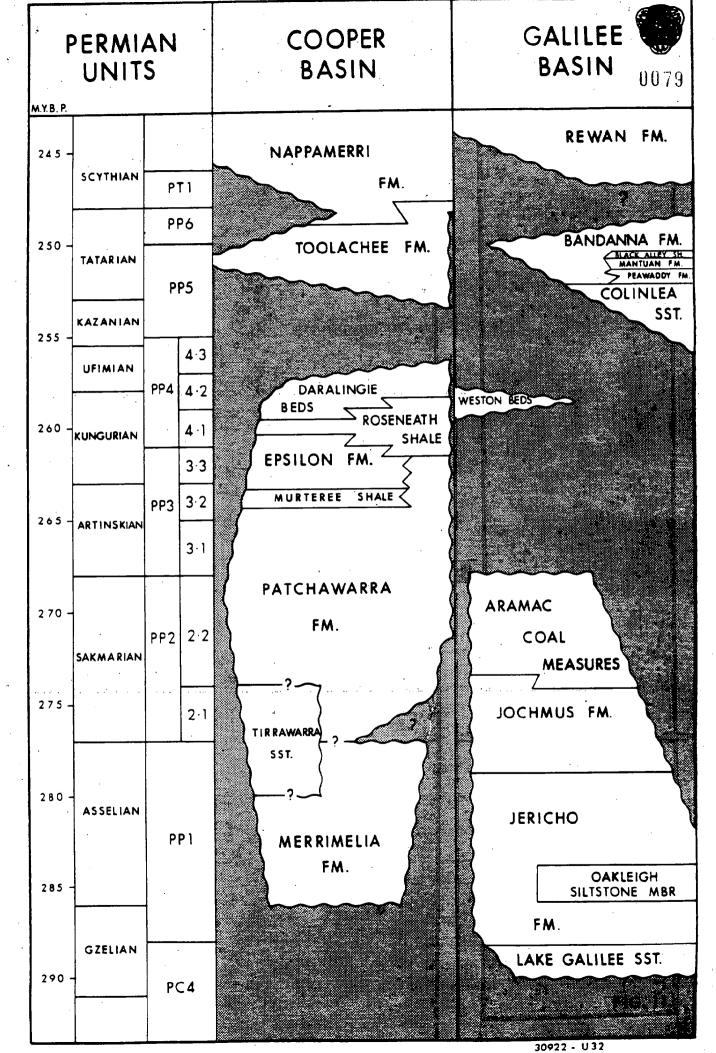
WESTBOURNE FM.

PÉDIRKA REGION COOPER REGION CRETACEOUS UNITS EROMANGA BASIN MYB P. WINTON FM. WINTON FM. PK7 CENOMANIAN MACKUNDA FM. MACKUNDA FM. MDST.Z ALLARU E. ludbrookiae PK6 100 -TOOLEBUC FM. TOOLEBUC FM. **OODNADATTA** 5.2 COORIKIANA FM. PK5 **COREENA** ALBIAN 5.1 MBR. EQU. WALLUMBILLA P turneri BULLDOG **COREENA** 110 -FM. PK4 SHALE MBR а **DONCASTER DONCASTER** APTIAN 3.2 MBR EQU PK3 O operculata MBR WYANDRA SST. MBR. 120 -BARREMIAN CADNA-OWIE CADNA - OWIE 2.2 PK2 FM. FM. HAUTERIVIAN 130 -2.1 VALANGINIAN MURTA UNIT 1.2 140 BERRIASIAN PK1 **ALGEBUCKINA** NAMUR SANDSTONE UNIT SST. TITHONIAN 150 1.1 KIMMERIDGIAN WESTBOURNE FM

MY	B.P.	JURASS	SIC U	NITS	ADAVALE REGION EROMANGA BASIN	ROMA REGION SURAT BASIN
		N E VALANGINIAN				
۱,	40-	BERRIASIAN	PKI	i·2	HOORAY SANDSTONE	ORALLO FORMATION
		TITHONIAN		1-1	· · · · · · · · · · · · · · · · · · ·	GUBBERAMUNDA SANDSTONE ?
		KIMMERIDGIAN	PJ6	62 622	WESTBOURNE FORMATION	WESTBOURNE FORMATION
	60-	OXFORDIAN	PJ5	6.1	ADORI SANDSTONE	SPRINGBOK SANDSTONE
		CALLOVIAN			BIRKHEAD FORMATION	TEUROMBAN FORMATION
		BATHONIAN	PJ4	4.2		
	80-	BAJOCIAN		4.1	HUTTON SANDSTONE	HUTTON SANDSTONE
		AALENIAN	PJ3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	·	
		TOARCIAN		3·2 3·1	BASAL JURASSIC SHALE UNIT	BOXVALE SANDSTONE MEMBER
	200-	PLIENSBACHIAN	PJ2	2.2 2.2.1		
	וטט	SINEMURIAN	PJI	21	,	
30921		HETTANGIAN	PT5	5.2		EDDYSTONE BEDS
- U33	220-	RHAETIAN		5 1	MOGA SANDSTONE HOORAY SANDSTONE ORALLO FORMATION GUBBERAMUNDA SANDSTONE WESTBOURNE FORMATION ADDRI SANDSTONE BIRKHEAD FORMATION BIRKHEAD FORMATION HUTTON SANDSTONE HUTTON SANDSTONE BASAL JURASSIC SHALE UNIT BOXVALE SANDSTONE MEMBER EVERGREEN FORMATION	


FIG.


0 7 J

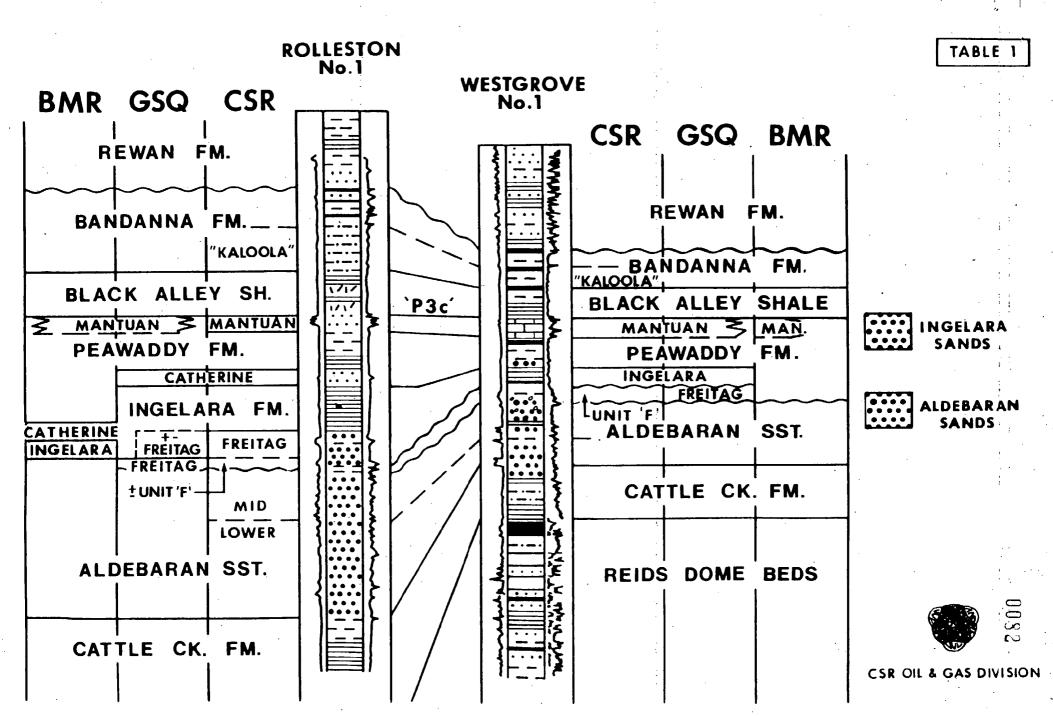


30916 - U32

	4 AF		PALI	YNOSTRA	ATIGRA	PHIC		SURAT			MORET	ON	
AGE MAYAR 140- 160- 160- 160- 200- 200-			UNI			BOWEN BASIN		CALLIDE	TARONG	ESK	IPSWICH		
	3		-		2·1		3	BUNGIL FM ?					
40-	ORE TACE	EARLY	MICROCACHRYIDITES	PK 1	1.2		BLYTHESDALE GROUP	1					
1			200		1,-1	'	BLYT.	GUBBERAMUNDA SST.					
		LATE	¥	PJ 6	6.2	627	1 2						·.
160	}		\prod	PJ 5		•	UNE CK.	WALLOON COAL MEAS			WALLOON COAL	L MEASURES	1
		MIDDLE	TSUGAEPOLLENITES	PJ 4	4.2		2	HUTTON			HEIFER CREEK		
180-	RASSIC	MIC	TSUGAET	PJ 3	3 3	331	-{	SST			ME MBE	ER	RBURG FM.
1	3	-	집		3 2			BOTYALE SIT MER.	MEMBER .		ME	EER SANDSTONE EMBER NGLOMERATE MBR	\ \{\bar{4}{8}}
200		I.Y	CLASSOPOLLIS	PJ 2	2.2	2 2 1	1	PRECIPICE SST				TON SST. MBR.	d . ,
	ļ	EARLY	[3]	PJ1	-	522	_	TRECTICE SS.	PAECIPICE ST		T HELIOUR 33.	RIPLEY ROAD FM.	8 \$
-				PT 5	5 2	5-2 1	┨	EDDYSTONE SEDS	CALLIDE COAL MEAS	<u>.</u>	HELIDON SST	RACEVIEW FM.	WOOGAROO SUB GROUP
220-			<u>ن</u>		<u>5_1_</u> 	-	4			7		BLACKSTONE FM. STINGALFA	1 3
	ပ္	LATE	FALCISPORITE	PT 4	41	-				TARONG BEDS	COUNTAIN SEE MEE. CRISS CONGLOM. MECTOR TUFF MT. CROSST FM. MACRUMIL BRECCIA	TIVOLI FM. COLLEGES CONGLOM TUFF VOLEMICS	CHOLD BRASS
240-	TRIASSIC	MIDDLE	A A	PT 3	ָּבַבְּלָ: 	z zc		MOOLAYEMBER FM. [INATE CE MUDITONE ST. CLEMATIS SST.			TOOGOOLAWAH GP.		
		EASIL	+-	PT 2	2 1	<u>-</u>]		REWAN FM.				1	

Supplement to:

GEOLOGICAL SOCIETY OF AUSTALIA


ABSTRACTS
NUMBER 17

BOWEN BASIN COAL SYMPOSIUM

An Historical Review of the Bowen Basin Stratigraphy

P.L. PRICE CSR OIL & GAS DIVISION

Since the delineation by Daintree in 1872 of the Permian and Triassic sediments which are now included in the Bowen Basin, it has been the subject of study by Geoscientists from a range of organisations, including Geological Survey of Queensland, University of Queensland, Bureau of Mineral Resources, Oil Exploration Companies and Coal Exploration Companies. As part of their studies, they have subdivided the sections and correlated these stratigraphical units across the Basin. A comprehensive compilation of the Bowen Basin's stratigraphy was presented in 1972 by Dickens and Malone (B.M.R. Bulletin No. 130) but with the change of geological concepts and the acquisition of new subsurface data, it has been modified. A view of the modifications is summarised on the accompanying stratigraphical tables, together with the palynostratigraphical units currently being used by CSR.

								· · · · · · · · · · · · · · · · · · ·
MYBP	AGE	. GAS DIV	BIO STRAT UNIT	ARCKA- RINGA PED BASIN BA		GALILEE BASIN	DENISON TROUGH	ROMA SHELF
245	b _{ex}	EARLY	PTI		NAPPAMERRI 1M	REWAN FM	REWAN FM	REWAN FM
250			PP6	1		,,	BANDADA FM	BANDANNA FM
		LATE	PP5		TOOLACHEE FM	BANDANNA FM Correlative	Simb Alley Shele Manies Fa Far-off Fa Gallatin Jib Leating Fa Friends Fa	Blath Alley Shale Mariana Pa Traspar (a Maplana Pa
2.5.5		۱ ا	4 3			COLINEEA SST	ğ	
260			PP4 4 2		DARALINGIE BEDS ROSENEATH SHALE	WESTON BEDS	ALDEBARAN HILL	
			3.3	1	EPSILON FM	WESTON GES	BACK	
265	IAN		PP3 3 2		MURTEREE SHALE		CATTLE CREEK FM	
270	PERMIAN				PATCHAWARRA G	ARAMAC	ORION FM REIDS DOME	
		EARLY	PP2 2 2	MT TOONDINA FM PUR	NI	COAL MEASURES	BEDS	ARBROATH
275		_	2 1	VIUARI KANGE	7	JOCHMUS FM		BEOS
260				FM :	351	GROUP		
			PPI	1 1	N POINT - MERRIMELIA	JERICHO IM	COMET VOLCANIC BEDS	
2 8 5		-	`			OAKLEIGH SILISTONE MBR		
290	SS		064			LAKE GALILEE SST		"KUTTUNGS"
	CARBONIFEROUS	LATE	PC4					
295	SAR BC		PC3					

| I. .u.t

LATE PERMIAN STRATIGRAPHIC UNITS

ROMA SHELF	DENISON TROUGH	COMET BLACKWATER	COLLINSVILLE	CORRELATABLE EVENTS
BANDANNA FM	BANDANNA FM	RANGAL C.M.	RANGAL C.M.	▼ TOP COAL MEASURE DEPOSITION ▼ TOP ABUNDANT
"KALOOLA"	"KALOOLA"	BURNGROVE		TUFF
BLACK ALLEY WINNATHOOLA COAL MBR SHALE	BLACK ALLEY SHALE	BLACK FM SHALE	FORT COOPER C. M.	⋖ 'P3c' ARCITARCH
MANTUAN FM	MANTUAN FM	FAIR HILL	C. M.	
TINOWON FM WALLABELLA COAL MBR	PEAWADDY FM	FM		BASE ABUNDANT
		CROCKER S	MORANBAH C.M.	TUFF ✓ 'P' TUFF
	CATHERINE SST	SAND	GOONYELLA SM	
MUGGLETON FM	INGELARA FM	SGERMAN CK	BLENHEIM	
LORELLE SST	INGELAKA PM	MARIA FM	SCOTTVILLE	CSR OIL & GAS DIV.
	FREITAG FM			

			PAL	YNOSTRA	IGRAPHIC		SURAT			MORET	N		
WARS	AG	E		UNII			BOWEN BASIN	CALLIDE	TARONG	ESK	IPSWICH	CSR O	IL & GAS
140-	ACEOUS	EARLY	OCACHRYIDITES.	PK 1	1-2	HESDALE GROUP		-					
160-		LATE	MICROC	PJ 6	1, 1 6 2 6 2 6 1	2 4	GUBBERAMUNDA SST. WESTBOURNE FM						
180-	SSIC	MIDDLE	TSUGAEPOLLENITES	PJ 5	4 2 4 1 3 3 3	BIOLM	HUTTON SST	_		MEMBE		ن ا 44	
200	JURASSIC	EARLY	CLASSOPOLIIS TS	PJ 3 PJ 2	3 2 3 1 2 2 2 2 1 2 1	2	EVERGREEN FM. PRECIPICE SST	WESTATOVE ISOMETONE MEMBER PRECIPICE SIL		WINWILL CON	K SANDSTONE BER GLOMERATE MBR ON SST. MBR	MARBURG	BUNDAMBA GROUP
		7.7		PJ 1 PT 5	5 2 5 2 5 2	-1	ESSTITONS SEDS	CALLIDE COAL MEAS		HELIDON SST	RIPLEY ROAD FM RACEVIEW FM ABIBDASE CONGIDM. PM	WOOGAROO SUB GROUP	
220	TRIASSIC	LE LATE	FALCISPORITES	PT 4	4-2		MOOLAYEARER EN		TARONG BEDS	COOMEANA 337 MBS CRISS CONDIOM HECTOR TUPP AT CROSSY PM MACENAL MACCIA TOOGODIAWAM GP.	TIVOLI FM. COLLEGES CONGION TUPP VOICABILES	ENGLO BEASSALL	PSWICH COAL MEAS
240-	TR	MIDDLE	-	PT 3 PT 2 PT 1	77 21		MOOLAYEMBER FM. THAT TY MODIFICATION REWAN FM.			SEE, MEATA & SEVORH			0086

	OPTED AGES	PRE-1985 USAGE	C	URRENT NOM		INDEX FORMS	
J URASSIC	EARLY	J1	PJ1				Classopollis classoides
S I C		BASAL BUNDAMBA	PT5	PT5.2	PT5.2.2 PT5.2.1		 Classopollis classordes Retitriletes austroclavatidites Retitriletes rosewoodensis
т		ASSEMBLAGE	~~~~~~	PT5.1	~~~~~~		Polycingulatisporites crenulatus/P. mooniensis
R	LATE		HIA	TUS	,		~~
1		IPSWICH	РТ4	PT4.2			Annulispora densata
A S		ASSEMBLAGE	* 1	PT4.1			~~ Annulispora folliculosa
s			нія	Т U S			• .
I C	MIDDLE	Tr3c-d	PT3			:	~~
	HIDDLE	Tr3a-b		Dm2 2			Lycopodiacidites kuepperi (sp. 84)
				PT2.2	ļ. 	·	
		Tr2b	РТ2			:	Rugulatisporites trisinus (sp. 708)
	EARLY	Tr2a		PT2.1		*	
		Trlb	PT1			· .	Aratrisporites spp.
			:				Lunatisporites pellucidus
PERM	LATE'	Trla	PP6				, , , , , , , , , , , , , , , , , , ,
Ā		 					Triplexisporites playfordii .

PABLE 6

0087

MAY 198

TABLE

	• •				* = == *.								
io .	AGE		PAI		TRATIGRAPHIC		SURAT			MORETON			089
MYB.P.		_		UN Price et			BOWEN BASIN	CALLIDE	TARONG	ESK	IPSWICH		DIL & GAS
	EOUS	>	E\$		2.1	GROUP	BUNGIL FM.						
140-	CRETACEOUS	EARLY	MICROCACHRYIDITES	PK 1	1.2	BLYTHESDALE GR	1						
			ROCA		1,-1	ВГУТНЕ	GUBBERAMUNDA SST.						
		LATE	W	PJ 6	6.2 6.2.2		WESTBOURNE FM.						
160-					6.1,7	8	S PRINGBOK SST.						
			ES	PJ 5		INJUNE	WALLOON COAL MEAS.		V	VALLOON COAL	MEASURES		
		MIDDLE	TSUGAEPOLLENITES	PJ4	4 1		HUTTON		·	HEIFER CREEK S	ANDSTONE		
180-	JURASSIC	W	TSUGAE	PJ 3	3.3.2		SST.		٠.	MEMBER		URG FM.	JUP
	JU		SI	133	3 · 2		BOXVALE \$51 MBR.	WESTGROVE IRONSTONE	0000000000000	MA - MA CREE	BER	MARBURG	A GROUP
			CLASSOPOLLIS	PJ2	2 · 2 2 · 2 · 2 · 2		EVERGREEN FM.			• • • • • • • • • • • • • • • • • • • •	SLOMERATE MBR.		NOAMBA
200-		EARL	CLAS	PJ 1	2 1	<u> </u>	PRECIPICE SST.	PRECIPICE SST		HELIDON SST.			9 N O
				PT 5	5 2 5 2 1		EDDYSTONE SEDS	100			RIPLEY ROAD FM.	GROUP	
				- ; ;;	5.1			CALLIDE COAL MEAS.		HELIDON SST.	RACEVIEW FM.	WOOV SUB	
220-		LATE	PORITES	 PT 4	4 2				TARONG BEDS	COONEANA SST. MBR.————————————————————————————————————	BLACKSTONE FM. TINGALPA	BRASSALL SUB GP.	WICH MEAS.
	SSIC		FALCISP	_;; <u>_</u>	4-1				1	MECTOR TUFF MT. CROSBY FM.— BLACKWALL BRECCIA	COLLEGES CONGLOM. TUFF	KHOLO SUB GP	PSW COAL
240-	TRIASSIC	MIDDLE		PT 3			MOOLAYEMBER FM. SNAKE CK. MUOSTONE			TOOGOOLAWAH GP.			
2407		EARLY		PT 2	2 · 2		REWAN FM.						
		\\\		PT 1 PP 6	}		7					FIGU	RE 8a

M.Y.B.P	AGE		STE	IO RAT NIT	ARCKA- RINGA BASIN	PEDIRKA BASIN	cod	OPER SIN		GALILEE BASIN		ENISON TROUGH		ROMA SHEL
245	l c ≤	EARLY	PT	Γ 1			NAPPAME	RRI FM.		REWAN FM.		REWAN FM.		REWAN FM.
250-			PF	۰6						?~~~	ВА	NDANNA FM.	ACKWATER GROUP	BANDANNA FM.
		LATE	PF	ı			TOOLAG	HEE FM.		BANDANNA FM. Correlative B.A.S. Mantuan fm. Feavoidly Fr		Block Alley Shale Mantuan Fm. Peawaddy Fm. Catherine Sat. Ingelara Fm.	<u> </u>	Black Alley Shale Mantuan Fm. Tinowon Fm. Muggleton Fm.
255-		-3		4.3						COLINLEA SST.		Ingelara Fm.	GROUP	
	-		PP4	4.2			DARA BEDS	INGIE	م			ALDEBARAN	CREEK	
260 -		e je se e	- 2 2 24	4·1 3·3			RC	SENEATH SHALE	GROU	WESTON BEDS		SST	BACK C	
	7		PP3 ^{i.}	3 2			EPSILON FM	7.	PA		CATTL	E CREEK FM.	8	
265-	PERMIAN		1.5	3 · 1		,	PATCH	AWARRA	GIDGEALPA		ORION			
270-	PEF				MAT. TOONIDINA	.	· · · · · · · · · · · · · · · · · · ·	FM.	9	ARAMAC COAL MEASURES	_1	REIDS DOME		
		EARLY	PP2	2.2	MT. TOONDINA	PURNI	a F					}		
275 -				2 · 1	,,,	FM.	TIRRAWARRA	?		JOCHMUS FM.				ARBROATH BEDS
	"" + + .	t session a	n S		FM.		SST			GROUP				
280			Р	Pl	BOORTHANNA	CROWN POINT	MERR	MELIA	·	JERICHO FM.	COME	VOLCANIC		
285					FM.	FM.		2		OAKLEIGH SILTSTONE MBR		BEOS 7		
	SUS						16.			LAKE GALILEE SST.				,
290-	FEROL	ш	P	C4		<i>#</i> 15.				LANE GALLEE 331.				
295 -	CARBONIFERC	LATE		_			7.00							
	S		P	C3	NOTE	The indicated is the maximu	vertical distribi im extent know	ution of the l n relative to (Lithor he B	tratigraphic Units lastratigraphic Units				
		<u> </u>			K19851 15001 884 16				<u> </u>			1		30927 - U32